Phase Dynamics of Bose-Einstein Condensates: Losses versus Revivals
نویسندگان
چکیده
In the absence of losses the phase of a Bose-Einstein condensate undergoes collapses and revivals in time due to elastic atomic interactions. As experiments necessarily involve inelastic collisions, we develop a model to describe the phase dynamics of the condensates in presence of collisional losses. We find that a few inelastic processes are sufficient to damp the revivals of the phase. For this reason the observability of phase revivals for present experimental conditions is limited to condensates with a few hundreds of atoms. PACS numbers: 03.75.Fi, 42.50.Gy, 05.30.Jp
منابع مشابه
Spin squeezing in a bimodal condensate: spatial dynamics and particle losses
We propose an analytical method to study the entangled spatial and spin dynamics of interacting bimodal Bose-Einstein condensates. We show that at particular times during the evolution spatial and spin dynamics disentangle and the spin squeezing can be predicted by a simple two-mode model. We calculate the maximum spin squeezing achievable in experimentally relevant situations with Sodium or Ru...
متن کاملVortices in atomic-molecular Bose–Einstein condensates
The structure and stability of vortices in hybrid atomic-molecular Bose–Einstein condensates is analysed in the framework of a two-component Gross–Pitaevskii-type model that describes the stimulated Raman-induced photoassociation process. New types of topological vortex states are predicted to exist in the coherently coupled two-component condensates even without a trap, and their nontrivial dy...
متن کاملPhase-diffusion dynamics in weakly coupled bose-einstein condensates.
We study the phase sensitivity of collisional phase diffusion between weakly coupled Bose-Einstein condensates, using a semiclassical picture of the two-mode Bose-Hubbard model. When weak coupling is allowed, zero relative phase locking is attained in the Josephson-Fock transition regime, whereas a pi relative phase is only locked in Rabi-Josephson point. Our analytic semiclassical estimates ag...
متن کاملVortex phase diagram in rotating two-component Bose-Einstein condensates.
We investigate the structure of vortex states in rotating two-component Bose-Einstein condensates with equal intracomponent but varying intercomponent-coupling constants. A phase diagram in the intercomponent-coupling versus rotation-frequency plane reveals rich equilibrium structures of vortex states. As the ratio of intercomponent to intracomponent couplings increases, the interlocked vortex ...
متن کامل